Blogger Tips and TricksLatest Tips And TricksBlogger Tricks

Saturday, 14 January 2012

Electromagnetic Relays and Selection Specifications

Electromagnetic Relay acts as a electrical switch operated by electromagnet. The coil on the relay forms the electromagnet. When excited by rated voltage, it pulls the moving portion of the relay contacts towards it resulting in electrical contact. Thus it turns a load circuit ON or OFF by energizing an electromagnet, which opens or closes contact in the circuit. A relay has one coil, but may have many contacts. The contact that changes is called pole and the non-moving contacts are called ways. When the coil is off, the contact with pole is called normally closed contact. (NO) The contact established after the coil is energized is called normally open contact. (NC) The coil and the contacts of a relay are electrically galvanically isolated from each other. 
 Relays finds wide use in timers, interlocks circuits, trips and safety units, changeover systems etc.

The main parameters required for selection of a relay are,
1. Coil rating 
2. Contact rating. 
3 Operation time or change over time. 
4. Type of enclosure and mounting. 
5. Relay driving circuits. 
6. Isolation voltage. (between coil and contact)

Coil rating.
            The coils are rated for nominal voltage rating (DC or AC) and watts or VA rating. For same contact rating, the VA rating of the coil is higher than watts. This is because of PF of the coil. For DC operated coils the excitation voltage and resistance are specified. For AC operated coils the AC voltage and VA rating are specified. (See the specification sheet attached) The minimum level of coil voltage, at which the relay switches on, is called Pick -up voltage. (Normally about 80% of normal coil voltage) Once the relay is on and the coil voltage is reduced slowly, level at which it goes off is called Dropout voltage, or Release voltage. (About 40 to 50% of nominal voltage) This shows Hysterisis in its operation. Because of this hysterisis, it is a normal practice to use comparator for its ON/OFF operation. The coil rating is directly proportional to the contact rating. If the contact rating doubles, coil rating also almost doubles.
             The standard coil ratings available for DC operated coils are 6, 12, 24Vdc (nominal). Coils are designed to take up to 20% higher excitation voltage. This reduces the need for regulated supply. 230 Vac / 50 Hz coils are available for AC excitation. The inrush current for AC coils is about 5 times higher than continuous coil rating.

Contact Rating
            The most important contact specification is its continuous current and voltage rating. The three current ratings specified are: -
a) Inrush or 'make contact' capacity.
b) Normal or continuos carrying capacity'.
c) The opening or breaking capacity.
For a specified relay, the contact rating is higher for ac currents than dc current rating. For example a contact rated for 230 Vac / 5 Amps, may be used for only 24 Vdc / 1 Amp. The duty cycle and use also decide the rating. For example the contact rating mentioned above is for resistive loads. For inductive load or inching duty for motor, this rating comes down considerably.
A relay may have multiple contacts and changeover contacts.
Operation Time
 The switch-on (or turn on time) period for a relay is the period required for the relay to come on and establish contact after energizing the coil. Similarly the turn off period is the period required for the relay contact to go back to it unenergized position after the coil excitation is removed. The operating time (Switch on and switch off periods) are generally between 5 to 20 msec. The ON period for relays is dependent on coil supply voltage. At pickup voltage it is minimum. As the coil voltage is increased, this period comes down. With further increase, the period comes down but it starts bouncing, thus increasing the settling time.

 The relays are available in open execution or in enclosure. If the relay is to be used inside a cabinet of an instrument or panel, then it may be used in open execution. However if in the place of use, if there is a possibility of dust gathering on the contacts ( and thus making bad electrical contact), then it becomes necessary to use enclosure for the relay assembly. When the relay contacts open or close, there is sparking between the contacts. In hazardous areas this unacceptable and a proper enclosure takes care of this problem. For EMI problems, the enclosure used is metallic and it is grounded.  The enclosures are available with socket and clamps for taking care of easy of removing the relay. Clamps are used to make sure that due to vibration in the system, the relay does not become loose.
The relays may be mounted on base plate or on PCB directly. The electrical contact is achieved by soldering the contacts.

Relay driving circuits.
 In most of the operations the relays are operate from control signals. The control signal drives a transistor in saturation or in cut off mode, switching on and off the relay. A free wheeling diode is use for taking care of coil inductance.

 Isolation voltage.
The isolation resistance and voltage between contacts and coil is very high The voltage is more than 500 V and the resistance is more than 100 M ohms. This galvanic isolation is necessary between control and other electrical circuit for safety reasons.
Blog Widget by LinkWithin


Subscribe To Get FREE Tutorials! And More....


PLC Ladder PLC Practice Problem PLC Ladder Programming training & tutorials Free Training on PLC Ladder Programming training & tutorials PLC Ladder Logic PLC Timer SCADA Basic PLC Ladder Programming Examples Delta PLC PLC & Visual Basic Communication PLC Definition Introduction PLC Error PLC Error LED RSLinx Tutorial Types of Timers in PLC ladder logic Programming programmable Logic Controllers AB addressing ABB AC Drive AC Drive training cource Actuators Advantages and Disadvantages Addressing of Allen Bradley PLC Micrologix 1000 Addressing of Delta PLC DVP SS/ES/EX Addressing of Mitsubishi PLC FX2N Addressing of Modicon PLC Micro TSX 3722 Addressing of Siemens PLC S7 200 Advantages & Disadvantages of RTD Advantages & Disadvantages of all types Sensors Advantages of SCADA Allen Bradley PLC PWM (Pulse Width Modulation) error codes Allen Bradley SLC Controller Error Codes Ampere Voltage Ratings of circuit brakers Analog addressing Allen bradley Analog input in Allen Bradley PLC Applications of Sensors Capacitive Proximity Sensors blck diagram Capacitive proximity sensors Circuit brakers Circuit diagram of motor starter Communication Between two E1000 HMI and mitsubishi Fx2n PLC Communication between FX3U PLC and SCADA via RS485BD Configuring the DF1 Driver using RSLinx Configuring the Ethernet Driver Connection between 2 E-Terminals and FX2N PLC. DOL Motor Starter PLC logic DOP Series Human Machine Interface DVP14ss Delta HMI Delta HMI Program Download.Delta HMI Communication Cable Delta HMI and RS485 Communication Delta MMI Delta PLC Projects Delta PLC input output addressing Different types of Special motor Diffrence between PLC and DCS Ebook on Basics of Allen Bradley PLC pdf Ebook on Basics of Siemens PLC pdf Ebook on Basics of VFD PDF download Electrical maintenannce tips Electromagnetic relay Error Messages from RSLogix Emulate 500 Failsafe meaning Features of Delta HMI/MMI Following are the Free PLC Software's available from all leading brands such as Allen Bradley Free PLC Ebooks Free PLC SCADA TRAINNING & TUTORIAL Free PLC Training Full form of HART HART OSI reference model HART protocol structure HMI & ZIGBEE How Capacitive Proximity Sensors Works? How Inductive Proximity Sensor Works? How Ultrasonic Sensors Works? How to Select a Suitable Motor How to Select the Right VFD (Inverter) or AC Motor Drive Ladder Logic for AND Ladder Program for Automatic Door open close Ladder Programs for Gates List of Top Most Widely used PLC’s in the Industry List of Widley used PLC Companies. Low cost Wireless I/O’s using PLC Mitsubishi Mitsubishi PLC FX2N & HMI E1000 Networking using BDTP Technology Mitsubishi PLC input output addressing Modbus Communication Modbus Ethernet Modbus Serial Modbus.dll for Visual Basic Mormally open Contact Normally Close Contact Explained Motion Actuators Motor starter in control circuit NAND NO NC Explained NOR Gates with Truth Tables Nashik Nexgenie PLC Features Nexgenie PLC Port Nexgenie PLC input output OFF Delay Timer OLE for Process and Control ON Delay Timer OR Omron On line Ladder Program Editing for RSLogix 500 On line Ladder changes Online Editing Ladder Program Online Servo tuning PID Control Instruction PID PLC PID instruction in Allen Bradley PLC PLC & VB PLC Counter PLC Error Allen Bradley PLC Error messages in Allen Bradley PLC FBD PLC Fault PLC Industrial Automation Training Institute PLC ON Delay Timer PLC Run Led PLC SCADA Communication PLC SCADA DCS Training Centers PLC SCADA Driver PLC SCADA Training Chennai PLC and ZIGBEE PLC application PLC based Automated Guided Vehicle PLC based Final year Project PLC based Line follower robot PLC based Project Report PLC functional Block Diagram PLC input wiring PLC interview Question PLC interview questions PLC maiintence PLC power LED PLC program for star delta starter PLC retentive timer PLC training in Delhi PLC training in Mumbai PLC training in Pune PTO Allen Bradley PTO [Pulse Train Output] Instruction in Allen Bradley PLC Photoelectric Sensor Applications Photoelectric Sensor Applications in Automation industry Power cable Selection Proficy HMI/SCADA Cimplicity 8.1 Programming Languages for PLC Proximity sensor application Push to ON PUSH to OFF PLC program using NO NC and Coil Pwm RSLinx Tutorial | Configuring the DF1 Driver RSLinx Tutorial | Configuring the Ethernet Driver Scaling Analog Input using SCL Instruction in PLC [Scale Data] Schneider Schneider PLC addressing Selction of Servo Motor Selction of Stepper Motor Selection of AC Motor Selection of VFD Selection of stepper or Servo Motor Sensor applications Servo Motor Servo auto tuning Parameters Siemens Siemens input output addressing Signal Cables selection Simatic Wincc SCADA Single Push button to on and off motor Sinking and sourcing operations Softwares used in SCADA Solid State Relay construction Solid State Relay uses and Advantages Sourcing and Sinking Concept in PLC Standard Wiring Color Codes Stepper Motor Applications and Advantages Disadvantages Stepper application Stepper motor Selection Stepper motor and PLC Tag in SCADA Temperature sensors used with PLC Theory of Capacitive Proximity Sensors Theory of Ultrasonic Sensors Theory or Operation of Inductive Proximity Sensors Thermistor & Temp IC Sensors Thermocouple Trial Run of PLC Troubleshooting Allen Bradley PLC with RSLogix Emulate 500 Troubleshooting Tips for Electrical /Electronic Maintenance Tutorial on PLC Types of Actuators Types of Actuators used for Motion in Automation with Advantages & Disadvantages Types of Sensors Types of Timers in PLC | ON Delay Timer (TON) Typical circuit diagram of Star Delta starter Ultrasonic Sensor Applications Ultrasonic sensors Unitronics VB 6.0 and PLC VIsual Basic as SCADA What is HART What is SCADA (Supervisory Control And Data Acquisition) What is SMART Communication What is a PLC ? What is DCS? What is the difference between PLC and Microcontroller? XIO [Examine if Open] & XIC [Examine if Closed] Explained advantages & disadvantages of Servo Motors anlog input addressing DELTA PLC anlog input addressing Mitsubishi PLC anlog input addressing siemens automation training comparison of PLC and DCS connecting field devices to Programmable Logic Controllers contact reting of relay design of fail safe systems digital common ground connections distributed control system drawbacks of Servo Motor fail safe PLC Redundancy modbus examples noise in cables one input one output PLC program using NO NC logic opc overload relay operation photoelectric plc Response Time plc output wiring plc program for TV remote plc training programmable Logic Controllers List relay coil rating relay driving circuit relay isolation voltage selection of relay servo basics servo training star delta starter control wiring diagram types of Counter typical circuit diagram of Direct on line starter